Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Motta, Pedro Naethe |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/14/14131/tde-09102023-150250/
|
Resumo: |
Black hole X-ray binaries (XRBs) serve as essential astrophysical laboratories for investigating the physics of the accretion flows and black holes. These systems, composed of a black hole and a companion star, exhibit a variety of spectral states, offering a unique opportunity to study the accretion dynamics on shorter timescales when compared to supermassive black holes (SMBHs). In this work, we address the challenge of capturing the radiation processes within XRBs by presenting an implementation of a radiation prescription, which offers a lower computational cost compared to traditional radiative transfer codes, within the GPU-accelerated code \\code. Our approach incorporates a radiative solution that accounts for bremsstrahlung, synchrotron radiation, comptonized synchrotron, and coulomb collisions. Through extensive testing, we validate the functionality of our methodology. Our implementation provides a low-cost tool for investigating the properties and dynamics of black hole accretion flows in XRBs. |