Diretrizes metodológicas e validação estatística de dados para a construção de data warehouses

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Takecian, Pedro Losco
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-10112014-110134/
Resumo: Os sistemas de integração de dados que usam a arquitetura de data warehouse (DW) têm se tornado cada vez maiores e mais difíceis de gerenciar devido à crescente heterogeneidade das fontes de dados envolvidas. Apesar dos avanços tecnológicos e científicos, os projetos de DW ainda são muito lentos na geração de resultados pragmáticos. Este trabalho busca responder à seguinte questão: como pode ser reduzida a complexidade do desenvolvimento de sistemas de DW que integram dados provenientes de sistemas transacionais heterogêneos? Para isso, apresenta duas contribuições: 1) A criação de diretrizes metodológicas baseadas em ciclos de modelagem conceitual e análise de dados para guiar a construção de um sistema modular de integração de dados. Essas diretrizes foram fundamentais para reduzir a complexidade do desenvolvimento do projeto internacional Retrovirus Epidemiology Donor Study-II (REDS-II), se mostrando adequadas para serem aplicadas em sistemas reais. 2) O desenvolvimento de um método de validação de lotes de dados candidatos a serem incorporados a um sistema integrador, que toma decisões baseado no perfil estatístico desses lotes, e de um projeto de sistema que viabiliza o uso desse método no contexto de sistemas de DW.