Novas abordagens para detecção automática de distorção arquitetural na mamografia digital e tomossíntese mamária

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Helder Cesar Rodrigues de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-02102019-140208/
Resumo: O câncer de mama é a doença que mais acomete as mulheres em todo o mundo, sendo o tratamento mais eficaz se for diagnosticada em estágio inicial. A partir de 2011, nos programas de rastreamento de países desenvolvidos, vem sendo empregada uma nova modalidade de exame, a tomossíntese digital mamária (Digital Breast Tomosynthesis - DBT), que possui diversas vantagens se comparada à mamografia digital. No exame, o médico radiologista busca por sinais suspeitos na imagem, como: nódulos, microcalcificações e distorção arquitetural mamária (DAM). Sendo que, este último pode representar o estágio mais inicial de um câncer em formação, podendo se manifestar antes da formação de qualquer outra lesão. No entanto, a DAM é difícil de ser detectada pois modifica o tecido mamário de forma sutil, não havendo qualquer formação de massa ou a borda definida. Os sistemas computacionais de auxílio ao diagnóstico (Computer-Aided Detection - CAD) vêm apresentando alto desempenho na detecção de nódulos e microcalcificações mamárias, mas para o caso da DAM, o desempenho ainda é insatisfatório. Algumas limitações são normalmente reportadas nos algoritmos adotados para detectar automaticamente a DAM. O presente trabalho tem por objetivo propor novas abordagens para aumentar a precisão dos métodos computacionais de detecção: o uso de descritores de micro-padrões local para discriminação de áreas suspeitas; redução de falsos-positivos; uso do volume 3D fornecido pelo exame de DBT e; uso de arquitetura de aprendizagem profunda para discriminação e classificação de regiões suspeitas. Os diversos testes efetuados em cada proposta mostraram que é possível melhorar as taxas de detecção da DAM, mesmo para imagens de DBT onde ainda não há um esquema computacional de detecção bem estabelecido.