Geração automática de dados de teste para programas concorrrentes com meta-heurística

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, José Dario Pintor da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13022015-143049/
Resumo: A programação concorrente é cada vez mais utilizada nos sistemas atuais com o objetivo de reduzir custos e obter maior eficiência no processamento. Com a importância da programação concorrente é imprescindível que programas que implementam esse paradigma apresentem boa qualidade e estejam livres de defeitos. Assim,diferentes técnicas e critérios de teste vêm sendo definidos para apoiar a validação de aplicações desenvolvidas nesse paradigma. Nesse contexto, a geração automática de dados de teste é importante, pois permite reduzir o custo na geração e seleção de dados relevantes. O uso de técnicas meta-heurísticas tem sido uma área de grande interesse entre os pesquisadores para geração de dados, pois essas técnicas apresentam abordagens aplicáveis a problemas complexos e de difícil solução. Considerando esse aspecto, este trabalho apresenta uma abordagem de geração automática de dados para o teste estrutural de programas concorrentes em MPI (Message Passing Interface). A meta-heurística usada foi Algoritmo Genético em que a busca é guiada por critérios de teste que consideram características implícitas de programas concorrentes. O desempenho da abordagem foi avaliado por meio da cobertura dos dados detestes, da eficácia em revelar defeitos e do custo de execução. Para comparação, a geração aleatória foi considerada. Os resultados indicaram que é promissor usar geração de dados de teste no contexto de programas concorrentes, com resultados interessantes em relação à eficácia e cobertura dos requisitos de teste.