Valorização de fibras de sisal: síntese de ésteres de celulose e preparação de materiais

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Rodrigues, Bruno Vinícius Manzolli
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
XPS
Link de acesso: http://www.teses.usp.br/teses/disponiveis/75/75134/tde-06052015-143056/
Resumo: O presente trabalho visou à valorização da fibra lignocelulósica de sisal, focando principalmente em seu componente majoritário, a celulose, através da síntese de ésteres de celulose e também na preparação de diferentes materiais. A escolha dessa fonte lignocelulósica deveu-se a sua disponibilidade no país, sendo o Brasil o maior produtor e exportador mundial, e por se tratar de uma fonte de fibras com alto teor de celulose e de curto ciclo de crescimento. A síntese de ésteres de celulose com diferentes tamanhos de cadeia (acetatos, butanoatos e hexanoatos) e grau de substituição (GS) foi explorada, em meios homogêneo e heterogêneo, visando à identificação de condições que levassem aos melhores rendimentos. Em meio homogêneo, utilizando DMAc/LiCl como sistema de solvente e anidridos ácidos como agentes esterificantes, a síntese de ésteres de celulose com diferentes tamanhos de cadeia e GS (0,2-3,0) foi possível, apenas ajustando-se a razão MolAnidrido/MolCelulose. Em meio heterogêneo, diferentes rotas de síntese foram exploradas. Com o uso do sistema anidrido ácido/iodo metálico (catalisador), apenas ésteres de cadeia curta (acetatos) puderam ser obtidos com alta eficiência. Na busca de rotas alternativas para a obtenção de ésteres de cadeias mais longas, o uso de cloreto ácido e piridina (como meio reacional e como catalisador nucleofílico, respectivamente) levou à obtenção de butanoatos de celulose completamente substituídos, em apenas 30 minutos. Posteriormente, os ésteres de celulose, preparados em meio homogêneo, foram considerados como materiais de partida na preparação de filmes e biocompósitos [ésteres de celulose/celulose (0-20%)], também utilizando DMAc/LiCl como sistema de solvente. Os resultados de análise dinâmico- mecânica (DMA) e ensaios de tração revelaram que, de modo geral, a introdução de celulose levou a biocompósitos com propriedades superiores em relação aos filmes sem celulose. Resultados superiores de módulo de armazenamento e resistência à tração foram obtidos com a consequente geração de materiais que apresentaram valores superiores de Módulo de Tração e menor alongamento na ruptura. Por exemplo, biocompósitos a partir de butanoato de celulose (GS 1,8) com 20% de celulose mostraram valor de módulo de armazenamento (675 MPa) quase 4x maior que o mesmo filme sem reforço (195 MPa). Para os filmes a partir de hexanoatos de celulose (GS 1,8), a adição de celulose aumentou a resistência à tração em até 1 unidade (15% de celulose), em relação ao filme sem reforço. Por meio do uso de técnicas avançadas de caracterização de superfície (XPS e ToF-SIMS), pôde-se estudar a distribuição dos grupos ésteres nas superfícies dos filmes, assim como a influência da variação do tamanho da cadeia do éster, GS e da presença da celulose nesta distribuição. Em linhas gerais, quando a cadeia lateral manteve-se constante (butanoatos), os resultados de XPS revelaram um aumento na contribuição do carbono alifático com o aumento do GS. Em relação à cobertura superficial por cadeias alifáticas dos grupos ésteres, os resultados de XPS indicaram uma maior concentração de celulose na superfície da matriz do biocompósito preparado a partir de acetato de celulose. Por outro lado, para os ésteres de cadeias maiores (butanoatos e hexanoatos de celulose), os resultados de XPS apontaram que a celulose estaria majoritariamente presente nas camadas mais internas, gerando um maior recobrimento da superfície dos biocompósitos pelos grupos ésteres da matriz. De acordo com os dados de ToF-SIMS, os grupos ésteres se distribuíram de maneira uniforme ao longo das superfícies dos filmes e biocompósitos. Posteriormente, após uma exploração de diversas condições de pré-tratamento na massa celulósica, as quais visaram condições ótimas para a dissolução da celulose em sistema aquoso de NaOH/Uréia e posterior coagulação em meio ácido, microesferas de celulose de sisal foram preparadas com sucesso. Essas microesferas de celulose apresentam potencialidade de aplicação em diversas áreas, como na liberação controlada de fármacos e cromatografia. Na etapa final, a fibra lignocelulósica e a celulose de sisal foram consideradas como materiais de partida em um estudo envolvendo a técnica de eletrofiação a temperatura ambiente, utilizando ácido trifluoroacético (TFA) como solvente. A partir do uso dessa técnica, a dissolução da fibra lignocelulósica e sua posterior reconstrução levou a formação de fibras ultrafinas (120 a 510 nm). A eletrofiação da celulose de sisal levou a formação de fibras ultrafinas e nanofibras (<100 nm), em um amplo intervalo de diâmetros, apenas ajustando-se a vazão da solução. Os resultados obtidos neste trabalho abrem uma vasta gama de possíveis aplicações, nas quais as fibras ultrafinas e nanofibras, preparadas a partir da biomassa lignocelulósica, podem ser empregadas, tais como membranas, filmes em estruturas do tipo sanduíche ou mesmo como reforço em compósitos. Através do presente trabalho, diferentes tipos de materiais foram preparados, a partir da fibra lignocelulósica e da celulose de sisal, ampliando as possibilidades de aplicação destes materiais em diversas áreas.