Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Liboni, Luisa Helena Bartocci |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18153/tde-30062017-091155/
|
Resumo: |
O objetivo principal desta tese consiste no desenvolvimento de ferramentas matemáticas e computacionais dedicadas a um sistema de diagnóstico de barras quebradas no rotor de Motores de Indução Trifásicos. O sistema proposto é baseado em um método matemático de decomposição de sinais elétricos, denominado de Decomposição em Componentes Ortogonais, e ferramentas de aprendizagem de máquinas. Como uma das principais contribuições desta pesquisa, realizou-se um aprofundamento do entendimento da técnica de Decomposição em Componentes Ortogonais e de sua aplicabilidade como ferramenta de processamento de sinais para sistemas elétricos e eletromecânicos. Redes Neurais Artificiais e Support Vector Machines, tanto para classificação multi-classes quanto para detecção de novidades, foram configurados para receber índices advindos do processamento de sinais elétricos de motores, e a partir deles, identificar os padrões normais e os padrões com falhas. Além disso, a severidade da falha também é diagnosticada, a qual é representada pelo número de barras quebradas no rotor. Para a avaliação da metodologia, considerou-se o acionamento de motores de indução pela tensão de alimentação da rede e por inversores de frequência, operando sob diversas condições de torque de carga. Os resultados alcançados demonstram a eficácia das ferramentas matemáticas e computacionais desenvolvidas para o sistema de diagnóstico, sendo que os índices criados se mostraram altamente correlacionados com o fenômeno da falha. Mais especificamente, foi possível criar índices monotônicos com a severidade da falha e com baixa variabilidade, demonstrando-se que as ferramentas são eficientes extratores de características. |