Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Sanchez, Luis Florial Espinoza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/
|
Resumo: |
Neste trabalho estudamos a geometria da evoluta afim e da curva normal afim associada à uma curva plana sem inflexões a partir do tipo de singularidade das funções suporte afim. O principal resultado estabelece que se \'\\gamma\' é uma curva plana sem inflexões, satisfazendo certas condições genéricas então dois casos podem ocorrer: 1. se p é um ponto da evoluta afim de \'\\gamma\' em \'s IND. 0\' então temos dois casos: se \'\\gamma\' (\'s IND. 0\') é um ponto sextático então, localmente em p, a evoluta afim é difeomorfa a uma cúspide em \'R POT. 2\' ; se não, localmente em p, a evoluta afim é difeomorfa à uma reta em \'R POT. 2\' , 2. se p = \'\\gamma\' (\'s IND. 0\') é um ponto da normal afim de \'\\gamma\' então temos dois casos: se \'\\gamma\'(\'s IND. 0\') é um ponto parabólico de \'\\gamma\' então, localmente em p, a curva normal afim é difeomorfa a uma cúspide em \'R POT. 2\' ; em outro caso, localmente em p, a curva normal afim é difeomorfa à uma reta em \'R POT. 2\' |