Aprendizado nebuloso híbrido e incremental para classificar pixels por cores.

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Bonventi Junior, Waldemar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03102005-095502/
Resumo: Segmentação de uma imagem é um processo de extrema importância em processamento de imagens e consiste em subdividir a imagem em partes constituintes correspondentes a objetos de interesse no domínio de aplicação. Objetos de interesse podem apresentar cores que se caracterizam numa imagem por um conjunto de pixels, que por sua vez possuem um número muito grande de valores cromáticos. Estes conjuntos podem ser denominados por relativamente poucos rótulos lingüísticos atribuídos por seres humanos, caracterizando as cores, representadas por classes. Entretanto, a fronteira entre estas classes é vaga, pois os valores cromáticos que definem a transição de uma cor para outra dependem de diversos fatores do domínio. Esta tese visa contribuir no processo de segmentação de imagens através da proposta de um classificador de pixels exclusivamente por meio do atributo cor. Para lidar com o problema da vagueza entre as classes de cores, emprega-se a teoria dos conjuntos nebulosos. Assim, propõe-se um aprendizado híbrido e incremental de modelos nebulosos de classes de cores constituintes do classificador. O aprendizado híbrido combina os paradigmas de aprendizado supervisionado e não-supervisionado, transferindo a rotulação individual das instâncias (muito custosa) para a rotulação dos grupos de instâncias similares, pelo agente supervisor. Estes grupos são combinados por meio da aplicação de operadores de agregação adequados, que possibilitam uma forma de aprendizado incremental, onde os modelos das classes existentes podem ser revisados ou novas classes, obtidas com a continuidade do treinamento, podem ser incorporadas aos modelos. Propõe-se, ainda, um processo de generalização do modelo, visando sua completude. O classificador proposto foi testado na modelagem da cor da pele humana em imagens adquiridas em condições ambientais controladas e em condições variadas. Os resultados obtidos mostram a eficácia do classificador proposto, obtendo uma detecção robusta e acurada da cor da pele em imagens digitais coloridas.