Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Freua, Mateus Castelani |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/74/74135/tde-14032017-100926/
|
Resumo: |
A predição da variância fenotípica é de grande importância para que os sistemas de produção de bovinos de corte consigam aumentar a rentabilidade otimizando o uso de recursos. Modelos mecanicistas dinâmicos do crescimento bovino vêm sendo utilizados como ferramentas de suporte à tomada de decisão em sistemas de manejo individual do gado. Entretanto, a aplicação desses modelos ainda fundamenta-se em parâmetros populacionais, sem qualquer abordagem para que se consiga capturar a variabilidade entre sujeitos nas simulações. Assumindo que modelos mecanicistas sejam capazes de simular o componente de desvio ambiental da variância fenotípica e considerando que marcadores SNPs possam predizer o componente genético dessa variância, esse projeto objetivou evoluir em direção a um modelo matemático que considere a variabilidade entre animais em seu nível genético. Seguindo conceitos de fisiologia genômica computacional, nós assumimos que a variância genética da característica complexa (i.e. produto do comportamento do modelo) surge de características componentes (i.e. parâmetros dos modelos) em níveis hierárquicos mais baixos do sistema biológico. Esse estudo considerou dois modelos mecanicistas do crescimento de bovinos - Cornell Cattle Value Discovery System (CVDS) e Davis Growth Model (DGM) - e ao questionar se os parâmetros de tais modelos mapeariam regiões genômicas que englobam QTLs já descritos para a característica complexa, verificou as suas interpretações biológicas esperadas. Tal constatação forneceu uma prova de conceito de que os parâmetros do CVDS e do DGM são de fato fenótipos cuja interpretação pode ser confirmada através das regiões genômicas mapeadas. Um método de predição genômica foi então utilizado para computar os parâmetros do CVDS e do DGM. Os efeitos dos marcadores SNPs foram estimados tanto para os parâmetros quanto para os fenótipos observados. Nós buscamos qual o melhor cenário de predição - simulações dos modelos com parâmetros computados a partir das informações genômicas ou predição genômica conduzida diretamente nos fenótipos complexos. Nós encontramos que enquanto a predição genômica dos fenótipos complexos pode ser uma melhor opção em relação aos modelos de crescimento, simulações conduzidas com parâmetros obtidos a partir de dados genômicos estão condizentes com simulações geradas com parâmetros obtidos a partir de métodos regulares. Esse é o principal argumento para chamar atenção da comunidade científica de que a abordagem apresentada nesse projeto representa um caminho para o desenvolvimento de uma nova geração de modelos nutricionais aplicados capazes de capturar a variabilidade genética entre bovinos de corte confinados e produzir simulações com variáveis de entrada específicas de cada genótipo. Esse projeto é a primeira abordagem no Brasil conhecida dos autores a usar genótipos Bos indicus para o estudo da aplicação de genômica integrada à modelos mecanicistas para o manejo e comercialização de animais na pecuária. |