Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Moral, Rafael de Andrade |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042018-153400/
|
Resumo: |
Data from insect studies may present different features. Univariate responses may be analyzed using generalized linear models (continuous and discrete data), survival models (time until event data), mixed effects models (longitudinal data), among other methods. These models may be used to analyse data from experiments which assess complex ecological processes, such as competition and predation. In that sense, computational tools are useful for researchers in several fields, e.g., insect biology and physiology, applied ecology and biological control. Using different datasets from entomology as motivation, as well as other types of datasets for illustration purposes, this work intended to develop new modelling frameworks and goodness-of-fit assessment tools. We propose accelerated failure rate mixed models with simultaneous location and scale modelling with regressors to analyse time-until-attack data from a choice test experiment. We use the exponential, Weibull and exponentiated-Weibull models, and assess goodness-of-fit using half-normal plots with simulation envelopes. These plots are the subject of an entire Chapter on an R package, called hnp, developed to implement them. We use datasets from different types of experiments to illustrate the use of these plots and the package. A bivariate extension to the N-mixture modelling framework is proposed to analyse longitudinal count data for two species from the same food web that may interact directly or indirectly, and example datasets from ecological studies are used. An advantage of this modelling framework is the computation of an asymmetric correlation coefficient, which may be used by ecologists to study the degree of association between species. The jointNmix R package was also developed to implement the estimation process for these models. Finally, we propose a goodness-of-fit assessment tool for bivariate models, analogous to the half-normal plot with a simulation envelope, and illustrate the approach with simulated data and insect competition data. This tool is also implemented in an R package, called bivrp. All software developed in this thesis is made available freely on the Comprehensive R Archive Network. |