Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Khouri, Adilson Lopes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-19042016-140611/
|
Resumo: |
O número de atividades disponibilizadas pelos sistemas gerenciadores de workflows científicos é grande, o que exige dos cientistas conhecerem muitas delas para aproveitar a capacidade de reutilização desses sistemas. Para minimizar este problema, a literatura apresenta algumas técnicas para recomendar atividades durante a construção de workflows científicos. Este projeto especificou e desenvolveu um sistema de recomendação de atividades híbrido, considerando informação sobre frequência, entrada e saídas das atividades, e anotações ontológicas para recomendar. Além disso, neste projeto é apresentada uma modelagem da recomendação de atividades como um problema de classificação e regressão, usando para isso cinco classificadores; cinco regressores; um classificador SVM composto, o qual usa o resultado dos outros classificadores e regressores para recomendar; e um ensemble de classificadores Rotation Forest. A técnica proposta foi comparada com as outras técnicas da literatura e com os classificadores e regressores, por meio da validação cruzada em 10 subconjuntos, apresentando como resultado uma recomendação mais precisa, com medida MRR ao menos 70% maior do que as obtidas pelas outras técnicas |