Esfera Homológica de Poincaré

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Barreto, Amanda Lopes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-01052023-133903/
Resumo: A Esfera Homológica de Poincaré, também conhecida como Espaço dodecaédrico de Poincaré, foi apresentada por Poincaré com o intuito de responder a questão levantada por ele próprio sobre a homologia ser uma ferramenta topológica que caracteriza a esfera tridimensional. Pensando nisso, essa dissertação teve como objetivo apresentar uma construção detalhada dessa variedade tridimensional, que possibilitasse a conclusão de que ela não é uma esfera tridimensional, apesar de ter os mesmos grupos de homologia da esfera tridimensional. Essa construção se deu através da topologia quociente entre a esfera tridimensional e seu subgrupo denominado Grupo Icosaédrico Binário, uma duplicação do grupo de simetrias que preservam a orientação do sólido platônico conhecido como Dodecaedro. Essa relação é possível devido à identificação que esses dois espaços têm com grupos relacionados aos quatérnios. A partir dessa construção concluímos que o Grupo Fundamental, um importante invariante da topologia algébrica, da Esfera de homologia de Poincaré é o Grupo Icosaédrico Binário. Como o Grupo Fundamental da esfera tridimensional é trivial, esses espaços não podem ser homeomorfos. Com isso, garantimos que o Espaço dodecaédrico de Poincaré é um contra-exemplo para o questionamento mencionado.