Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Barreto, Amanda Lopes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-01052023-133903/
|
Resumo: |
A Esfera Homológica de Poincaré, também conhecida como Espaço dodecaédrico de Poincaré, foi apresentada por Poincaré com o intuito de responder a questão levantada por ele próprio sobre a homologia ser uma ferramenta topológica que caracteriza a esfera tridimensional. Pensando nisso, essa dissertação teve como objetivo apresentar uma construção detalhada dessa variedade tridimensional, que possibilitasse a conclusão de que ela não é uma esfera tridimensional, apesar de ter os mesmos grupos de homologia da esfera tridimensional. Essa construção se deu através da topologia quociente entre a esfera tridimensional e seu subgrupo denominado Grupo Icosaédrico Binário, uma duplicação do grupo de simetrias que preservam a orientação do sólido platônico conhecido como Dodecaedro. Essa relação é possível devido à identificação que esses dois espaços têm com grupos relacionados aos quatérnios. A partir dessa construção concluímos que o Grupo Fundamental, um importante invariante da topologia algébrica, da Esfera de homologia de Poincaré é o Grupo Icosaédrico Binário. Como o Grupo Fundamental da esfera tridimensional é trivial, esses espaços não podem ser homeomorfos. Com isso, garantimos que o Espaço dodecaédrico de Poincaré é um contra-exemplo para o questionamento mencionado. |