Fusão computacional de observações afetivas.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Cueva, Diego Ruivo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-06072014-222834/
Resumo: Este trabalho tem como objetivo discutir o estado da arte e propor melhorias em uma área de grande potencial e de crescimento recente na computação: a análise do estado emocional do usuário de um sistema de informação e a aplicação dessa observação em cenários ricos de interação homem-máquina. Para foco em um escopo tratável, escolheu-se o estudo das técnicas atuais de captação afetiva através de três sensores diferentes (expressões faciais, expressões vocais e contexto semântico) e de como sua combinação poderia resultar em dados mais robustos sobre o estado emocional do usuário, em uma aplicação conhecida como Fusão Multimodal. Nesse sentido, o trabalho levanta não apenas a bibliografia recente sobre o estado da arte da aquisição de dados nas três áreas e em fusão, mas também aplica algumas das ferramentas existentes (tanto comerciais como abertas) para melhor compreensão do nível atual da tecnologia acessível ao público acadêmico. Dada a inexistência de uma aplicação facilmente disponível para análise de emoções no contexto semântico, desenvolveu-se uma ferramenta dedicada à pesquisa, nomeada emoCrawler, a qual utiliza redes sociais para avaliação do caráter emocional que palavras indiretamente podem acarretar em uma discussão. O emoCrawler busca avaliar as emoções evocadas em usuários de Twitter e as compara com um dicionário emocional conhecido, baseado em contribuições acadêmicas diversas, gerando um resultado quantitativo útil ao escopo do trabalho. Por fim, o trabalho lançou mão da ferramenta emoCrawler e das outras ferramentas selecionadas para análise de expressões faciais e vocais na criação de um sistema de fusão sensorial que aumente a confiabilidade global da emoção detectada. Para isso, inicialmente um corpus de áudio e vídeo disponível foi tratado e reduzido para o escopo da pesquisa. Em seguida, diferentes técnicas de fusão baseadas em algoritmos de classificação foram aplicadas (redes neurais, Naive Bayes e Support Vector Machine), com abordagens distintas de treinamento para busca de resultados melhores dos que os encontrados nas aplicações unimodais. Os resultados verificados de fato indicam para uma melhor taxa de detecção quando é aplicado o algoritmo de fusão. Nesse processo, a presença de dados fornecidos pelo emoCrawler parece ter contribuído positivamente.