Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Tsuda, Fernando |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-02072012-171814/
|
Resumo: |
Este trabalho apresenta os resultados da pesquisa e da aplicação de técnicas de GPGPU (General-Purpose computation on Graphics Processing Units) sobre o sistema de vídeo-avatar com realidade aumentada denominado AVMix. Com o aumento da demanda por gráficos tridimensionais interativos em tempo real cada vez mais próximos da realidade, as GPUs (Graphics Processing Units) evoluíram até o estado atual, como um hardware com alto poder computacional que permite o processamento de algoritmos paralelamente sobre um grande volume de dados. Desta forma, É possível usar esta capacidade para aumentar o desempenho de algoritmos usados em diversas áreas, tais como a área de processamento de imagens e visão computacional. A partir das pesquisas de trabalhos semelhantes, definiu-se o uso da arquitetura CUDA (Computer Unified Device Architecture) da Nvidia, que facilita a implementação dos programas executados na GPU e ao mesmo tempo flexibiliza o seu uso, expondo ao programador o detalhamento de alguns recursos de hardware, como por exemplo a quantidade de processadores alocados e os diferentes tipos de memória. Após a reimplementação das rotinas críticas ao desempenho do sistema AVMix (mapa de profundidade, segmentação e interação), os resultados mostram viabilidade do uso da GPU para o processamento de algoritmos paralelos e a importância da avaliação do algoritmo a ser implementado em relação a complexidade do cálculo e ao volume de dados transferidos entre a GPU e a memória principal do computador. |