Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Leão, Aline Aparecida de Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20052009-160448/
|
Resumo: |
O Problema da Mochila Compartimentada é uma extensão do Problema da Mochila, em que os itens solicitados são divididos em classes, de modo que a mochila deve ser subdividida em compartimentos, os quais têm capacidades limitadas e são carregados com itens da mesma classe. Além disso, a construção de um compartimento tem um custo fixo e ocasiona uma perda no espaço da mochila. O objetivo consiste em maximizar a soma dos valores dos itens, descontado o custo fixo de inclusão de compartimentos. Neste trabalho, são abordados dois métodos de solução. A primeira abordagem é uma heurística, que consiste na combinação de duas heurísticas da literatura. A segunda abordagem é o método Geração de Colunas, que além de fornecer um novo limitante superior para o Problema da Mochila Compartimentada, ao final do método o problema mestre foi resolvido com as variáveis definidas como inteiras, obtendo uma solução factível. Em ambos os métodos, o modelo não-linear é decomposto em dois modelos lineares, no qual, um gera compartimentos e o outro os seleciona. Os resultados obtidos com as duas abordagens foram comparados com um limitante superior e se mostraram bastante satisfatórios |