Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Leite, Marina Moraes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/46/46136/tde-12042018-105218/
|
Resumo: |
Titanatos nanoestruturados (TNS) obtidos pelo tratamento hidrotérmico de TiO2 são semicondutores muito estudados por suas propriedades de alta área superficial e capacidade de troca iônica. No entanto, sua estrutura cristalina e a influência das condições de síntese e pós-tratamento ainda são motivos de controvérsia. Neste estudo, TNSs foram produzidos em diversas condições e submetidos a diferentes tipos de tratamento ácido e térmico. Os materiais foram caracterizados por difratometria de raios X (DRX), espectroscopias vibracionais (Raman e FTIR), espectroscopia de refletância difusa (DRS), análise térmica (TG, DTG e DSC), análise textural por adsorção de N2 a 77 K, análise química por ICP-OES, e microscopia eletrônica de transmissão. Acompanhando a transformação hidrotérmica de TiO2 (anatase) nanocristalino obtido em laboratório com o tempo, observou-se que os nanocristais de TiO2 se transformam em estruturas lamelares com formato de folhas entre 3h e 12h. As nanofolhas se enrolam parcial ou totalmente formando nanotubos. A transformação da morfologia é acompanhada por uma transformação de fase de anatase para uma fase titanato lamelar, que se completa entre 12h e 24h. Utilizando TiO2 P25 como precursor, observou-se que as amostras obtidas apresentam alto teor de Na+, que é progressivamente eliminado por lavagens do sólido com H2O ou solução ácida. Quanto menor o pH de equilíbrio da suspensão, menor foi o teor de Na+ até o limite de pH 2, em que esse cátion foi praticamente eliminado. A diminuição do teor de sódio foi acompanhada de aumento da área superficial (BET, 155 e 205 m2.g-1 para pH 9 e 2, respectivamente); aumento do espaço interlamelar; diminuição da cristalinidade; e diminuição do bandgap (3,60 e 3,45 para pH 9 e 2, respectivamente). Em pH 1,5, ocorreu ainda maior aumento do espaço interlamelar e da área superficial (368 m2.g-1) indicando que a troca iônica de Na+ por H3O+ não é unicamente responsável pelas transformações estruturais que ocorrem durante a neutralização de TNSs. A desidratação em baixa temperatura (até 150 °C) sofrida por TNSs acidificados é irreversível, levando à diminuição do espaço interlamelar, e formação de vacâncias de oxigênio responsáveis pela absorção de radiação acima de 420 nm (visível). A transformação de fase de titanato para anatase ocorreu à temperatura ambiente quando a neutralização foi feita com HF; entre 300 e 400 °C quando feita com HCl, HNO3, H2SO4 ou ácido acético; e acima de 600 °C quando usado H3PO4. Foi possível inserir diferentes quantidades de prata em TNS através da suspensão dos sólidos em solução de AgNO3. A reação levou à formação de nanopartículas cristalinas de 3 a 5 nm, contendo prata, na superfície das partículas de TNS. Ag+ foi reduzido a Ag0 pelo tratamento térmico das amostras a 250 °C em presença de H2(g). Essas amostras apresentaram absorção de radiação em todo o espectro visível e menor bandgap (3,06 em amostra contendo 3% de Ag, em massa). Em amostras com pouca quantidade de prata (menos de 0,05% em massa), foram observadas bandas largas de absorção (DRS) de ressonância de plasmon de superfície quando calcinadas a 250 °C em H2(g). |