Avaliação de técnicas de decomposição para a otimização em tempo real de uma unidade de produção de propeno.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Acevedo Peña, Alvaro Marcelo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3137/tde-28122015-115945/
Resumo: Estratégias de otimização em tempo real (RTO: Real Time Optimization) são utilizadas para avaliar e determinar as condições ótimas operacionais de uma planta em estado estacionario, maximizando a produtividade econômica do processo sujeita a restrições operacionais. Esse problema de otimização engloba toda a planta e pode ser resolvido utilizando um só modelo para todo o processo que maximize o lucro bruto operacional considerando os preços de mercado das correntes de entrada e saída do processo. No entanto, na prática, essa abordagem centralizada muitas vezes não pode ser aplicada, devido ao tamanho e complexidade do problema de otimização, a que é muito difícil que todas as unidades da planta estejam em estado estacionário ao mesmo tempo e a que as unidades de processo não estão sincronizadas já que em muitos processos não existe armazenamento intermediário. Uma solução é utilizar uma estrutura distribuída, na qual o problema de otimização deve ser decomposto em subproblemas com reduzida complexidade numérica. Tal decomposição, no entanto, exige que o preço das correntes de entrada e saída de cada subproblema sejam adequadamente determinados. Com este proposito, neste trabalho, serão aplicadas técnicas de decomposição em uma unidade de produção de propeno da refinaria REPLAN (Refinaria de Paulínia, São Paulo) da PETROBRAS. Essa unidade será modelada, simulada e otimizada no software orientado a equações EMSO (Environment for Modeling, Simulation and Optimization). Com o objetivo de testar as técnicas de decomposição, a unidade será decomposta em três divisões que são: depropanizadora, deetanizadora e C3 splitter. Mostra-se que duas técnicas tradicionais chamadas de relaxação Lagrangiana e Lagrangeano aumentado não conseguem convergir em uma solução devido a duas causas. A primeira causa é que o processo estudado contém divisões indiferentes, o que significa que não existe dependência linear entre a função objetivo e as restrições complicadoras. A segunda causa é que os subproblemas de otimização que representam cada uma das divisões da unidade têm funções objetivos lineares, neste caso, a restrição ativa de cada subproblema irá ser sempre a capacidade de produção máxima ou mínima de cada divisão e não uma vazão intermediária. Uma técnica alternativa, Pricing Interprocess Streams Using Slack Auctions, também foi aplicada ao processo estudado. Essa técnica define uma folga de recurso entre as correntes 2 intermediárias das divisões e utiliza leilões para ajustar o preço dos produtos intermediários. Mostra-se que esse último abordagem também apresenta problemas na sua aplicação, porque todas as divisões estudadas têm dois produtos diferentes, isso significa que a técnica produzirá sempre a vazão máxima do produto final (vazão que tem preço de mercado) de cada divisão e não assim do produto intermediário (vazão que vai de uma divisão para outra). Identificados os problemas nessas técnicas de decomposição, é proposta uma modificação do algoritmo de relaxação Lagrangeana. Para o qual é considerada uma nova variável denominada limite de produção disponível (LPD) e uma restrição para as vazões de carga de cada uma das divisões, a qual será atualizada a cada iteração. Essa modificação no algoritmo consegue superar os problemas apresentados para a resolução do problema de otimização para a unidade estudada considerando uma estrutura distribuída.