Empregando técnicas de visualização de informação para transformação interativa de dados multidimensionais

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Fatore, Francisco Morgani
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07112016-143451/
Resumo: A exploração de conjuntos de dados é um problema abordado com frequência em diversos domínios e tem como objetivo uma melhor compreensão de fenômenos simulados ou medidos. Tal atividade é precedida pelas etapas de coleta e armazenamento de dados que buscam registrar o máximo de detalhes sobre algum fenômeno observado. Porém, a exploração efetiva dos dados envolve uma série de desafios. Um deles é a dificuldade em identificar quais dados são realmente relevantes para as análises. Outro problema está relacionado com a falta de garantias de que os fatores fundamentais para a compreensão do problema tenham sido coletados. A transformação interativa de dados é uma abordagem que utiliza técnicas de visualização computacional para resolver ou minimizar esses problemas. No entanto, os trabalhos disponíveis na literatura possuem limitações, como interfaces demasiadamente complexas e mecanismos de interação pouco flexíveis. Assim, este projeto de mestrado teve como objetivo desenvolver novas técnicas visuais interativas para a transformação de dados multidimensionais. A metodologia desenvolvida se baseou no uso de biplots e na ação conjunta dos mecanismos de interação para superar as limitações das técnicas do estado da arte. Os resultados dos experimentos realizados sobre diversos conjuntos de dados dão indícios de que os métodos desenvolvidos possibilitam a obtenção de conjuntos de dados mais representativos. Mais especificamente, foram obtidos melhores resultados em tarefas de classificação de dados ao utilizar os métodos desenvolvidos.