Projeto de transdutores piezocompósitos de casca multi-camada utilizando o método de otimização topológica.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Kiyono, César Yukishigue
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-30072013-210104/
Resumo: Transdutores baseados em cascas piezocompósitas têm uma vasta aplicação no campo de estruturas inteligentes, principalmente como atuadores, sensores e coletores de energia. Essas estruturas piezocompósitas são geralmente compostas por dois ou mais tipos de materiais, como por exemplo materiais piezelétricos, ortotrópicos elásticos (possuem fibras de reforçamento) e isotrópicos (materiais homogêneos). Vários fatores devem ser considerados no projeto de transdutores baseados em cascas piezocompósitas, como o tamanho, a forma, a localização e a polarização do material piezelétrico, bem como a orientação das fibras do material ortotrópico. O projeto desses transdutores é complexo e trabalhos anteriores envolvendo esses tipos de materiais sugerem utilizar Método de Otimização Topológica (MOT) para aprimorar o desempenho dos transdutores distribuindo o material piezelétrico sobre substratos fixos de materiais isotrópicos e ortotrópicos, ou otimizar a orientação das fibras dos materiais ortotrópicos com material piezelétrico com tamanho, forma e localização previamente estabelecidos. Assim, nesta tese, propõe-se o desenvolvimento de uma metodologia baseada no MOT para projetar transdutores piezocompósitos de casca considerando, simultaneamente, a otimização da distribuição e do sentido de polarização do material piezelétrico, e também a otimização da orientação das fibras de materiais ortotrópicos, que é livre para assumir valores diferentes ao longo da mesma camada compósita. Utilizando essa metodologia, são obtidos resultados numéricos para atuadores e sensores em regime estático e para coletores de energia com circuito elétrico acoplado, em regime dinâmico amortecido. Para os casos dos sensores e dos coletores de energia, também são consideradas as tensões mecânicas na estrutura, as quais devem obedecer os critérios de von Mises (para materiais isotrópicos) e de Tsai-Wu (para materiais ortotrópicos) para que não haja falhas na estrutura, que está sujeita a esforços mecânicos.