Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Moreto, Fernando Alves de Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3142/tde-30052008-133011/
|
Resumo: |
Este trabalho estuda o modelo de análise em componentes independentes (ICA) para misturas instantâneas, aplicado na separação de sinais de áudio. Três algoritmos de separação de misturas instantâneas são avaliados: FastICA, PP (Projection Pursuit) e PearsonICA; possuindo dois princípios básicos em comum: as fontes devem ser independentes estatisticamente e não-Gaussianas. Para analisar a capacidade de separação dos algoritmos foram realizados dois grupos de experimentos. No primeiro grupo foram geradas misturas instantâneas, sinteticamente, a partir de sinais de áudio pré-definidos. Além disso, foram geradas misturas instantâneas a partir de sinais com características específicas, também geradas sinteticamente, para avaliar o comportamento dos algoritmos em situações específicas. Para o segundo grupo foram geradas misturas convolutivas no laboratório de acústica do LPS. Foi proposto o algoritmo PP, baseado no método de Busca de Projeções comumente usado em sistemas de exploração e classificação, para separação de múltiplas fontes como alternativa ao modelo ICA. Embora o método PP proposto possa ser utilizado para separação de fontes, ele não pode ser considerado um método ICA e não é garantida a extração das fontes. Finalmente, os experimentos validam os algoritmos estudados. |