Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Faria, Maicon Saul
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-21102010-123034/
Resumo: Utilizamos um formalismo de operadores e a técnica de grupo de renormalizacao de Dasgupta, Ma e Hu para analisar o efeito de distribuições inomogêneas dos parâmetros sobre o comportamento crítico de um modelo estocástico simples. O processo de contato em uma dimensão constitui talvez o modelo mais simples que apresenta uma transição de fase para um estado absorvente. Nós usamos as seqüências de Fibonacci, duplicação de período e triplicação de período para introduzir inomogeneidades aperiódicas no processo de contato unidimensional e em uma cadeia quântica de spin. Usando procedimento de grupo de renormalização de desordem forte, estabelecemos algumas relações entre propriedades dos operadores renormalizados e grandezas termodinâmicas ou médias. Fomos capazes de testar o critério de relevância de flutuações geométricas de Harris-Luck, de obter vários expoentes críticos, e de observar aspectos característicos de dinâmica lenta e oscilações log-periódicas. A sequência de triplicação de período nos leva aos expoentes = ln (7/9)/ ln (4/9), = ln (9/7)/ ln 4, = ln 3/ ln (3/2) e k = ln 2/ ln (3/2). Usamos técnicas de Monte Carlo para confirmar os resultados de grupo de renormalização. As simulações numéricas indicam a validade do critério de relevância de Harris-Luck, e corroboram o caráter universal do comportamento crítico desses sistemas aperiódicos.