Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Ortega, Thais Andrea |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19112005-155423/
|
Resumo: |
Atualmente há uma quantidade considerável de informação sobre o comportamento da economia à disposição da autoridade monetária, cuja decisão é provavelmente baseada nesse grande conjunto de dados. Entretanto, grande parte das análises empíricas de política monetária é baseada em modelos de pequena escala, e o problema de variáveis omitidas pode ser relevante. Uma literatura mais recente mostrou que grandes conjuntos de séries macroeconômicas podem ser modelados usando fatores dinâmicos, que são considerados um resumo da informação contida nos dados. Neste trabalho combinamos os fatores extraídos de 178 séries de tempo com os modelos tradicionais de pequena escala para analisar a política monetária no Brasil. Os fatores estimados são usados como instrumentos em regras de Taylor forward looking e como regressores adicionais em VAR´s. A informação extraída de grandes conjuntos de dados mostrou-se bem útil na análise empírica da política monetária. |