CITRUSVIS - Um sistema de visão computacional para a identificação do fungo Guignardia citricarpa, causador da mancha preta em citros

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Pazoti, Mário Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15122017-145610/
Resumo: As pragas e doenças apresentam-se como um desafio para a citricultura brasileira em razão do impacto económico que elas causam à produção. Neste trabalho é dado destaque à doença da mancha preta (MPC), causada pelo fungo Guignardia citricarpa. Essa doença provoca lesões no fruto, depreciando-o no mercado de frutas in natura, além de causar amadurecimento e queda precoce. Um dos principais agravantes da doença é a demora no aparecimento dos sintomas, sendo muito importante detectar a presença dos esporos do fungo no pomar, antes que os sintomas apareçam. Dessa maneira, há a possibilidade de se controlar a doença de forma eficaz, aplicando-se quantidades menores de fungicidas e, consequentemente, reduzindo os custos da produção e os efeitos deletérios ao meio-ambiente. Atualmente, a detecção desses esporos é realizada por meio da análise de amostras coletadas nos pomares. Essa análise é efetuada por especialistas que realizam a identificação e a contagem dos ascósporos manualmente. Com o objetivo de automatizar esse processo, um conjunto de técnicas para a análise das imagens e a caracterização dos ascósporos do fungo a partir da forma foi estudado e comparado. Dentre as técnicas, a curvatura e os descritores de Fourier apresentaram resultados bastante satisfatórios e foram utilizados na implementação do protótipo de um sistema de visão computacional - o CITRUSVIS, que analisa e identifica os ascósporos existentes nas imagens dos discos de coleta.