Detalhes bibliográficos
Ano de defesa: |
2001 |
Autor(a) principal: |
Viola, Denise Nunes |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-26032002-113122/
|
Resumo: |
Dados de contagem podem ser considerados, em geral, como provenientes de uma distribuição de Poisson. Neste contexto, a análise de tais dados apresenta certas dificuldades, pois não segue algumas pressuposições básicas para o ajuste de um modelo matemático. Desse modo, algumas transformações são sugeridas, mas nem sempre bons resultados são obtidos. No enfoque de Modelos Lineares Generalizados, a estatística que mede a qualidade do ajuste do modelo para os dados é chamada deviance. Porém, a distribuição da deviance é, em geral, desconhecida. No entanto, para dados com distribuição de Poisson, pode-se mostrar que a distribuição da deviance se aproxima de uma distribuição ?2, mas tal aproximação não é boa para tamanhos pequenos de amostra. Para melhorar essa aproximação, alguns fatores de correção para os dados são sugeridos, mas os resultados obtidos ainda não são satisfatórios. Assim, o objetivo deste trabalho é propor um novo fator de correção para os dados seguindo uma distribuição de Poisson, de modo a se obter uma melhora na distribuição da deviance para qualquer tamanho de amostra. Para isto, será adicionada uma constante à variável resposta e, através do valor esperado da deviance, calcula-se tal constante de modo a reduzir o erro cometido na aproximação. Para verificar a melhora na aproximação da distribuição da deviance a uma distribuição qui-quadrado, dados de uma distribuição de Poisson são simulados e o valor da deviance é calculado. QQ-plots são construídos para a comparação com a distribuição qui-quadrado. |