Detalhes bibliográficos
Ano de defesa: |
1978 |
Autor(a) principal: |
Freitas, Alfredo Ribeiro de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/11/0/tde-20240522-110357/
|
Resumo: |
No presente trabalho estudaram-se a distribuição do ponto de máximo ou de mínimo da função de produção Yi = a + b Xi1/2 + c Xi + ei Para simplificação de cálculos usaram-se polinômios ortogonais, resultando a equação Yi = â + b̂ P1 (Zi) + ĉ P2 (Zi) onde P1 (Zi) e P2 (Zi) são os polinômios ortogonais propriamente dito Portanto têm-se b̂ e ĉ independentes. O ponto de máximo ou de mínimo dessa equação é dado por √X= -b / 2 ĉ. Estimaram-se b e c em um total de 536 ensaios com a cultura do algodão. Com esses valores geraram através da sub-rotina RANDU 1.000 valores para b̂ e 1.000 para ĉ com distribuição aproximadamente normal. Esses valores foram ajustados adequadamente de modo que obtiveram-se 1,000 valores para b̂ e 1.000 para ĉ, relativos a cada uma das variâncias: 5,00; 10,00; 15,00; 20,00; 25,00; 30,00; 35,00; 40,00; 45,00 e 50,00. Com esses valores calcularam-se o terceiro e quarto momentos em relação à média, o quarto momento esperado (caso a distribuição de √X fosse normal). Obtiveram-se ainda os valores de ?^1 (coeficiente de assimetria) ?^2 (coeficiente de curto - se). Após a aplicação da prova de t, concluíram que somente nas variâncias σ2 5,00 e σ2 10,00 a distribuição de √X é aproximadamente normal. Nos demais casos, foge completamente da normalidade; caracterizando distribuições leptocúrticas e com assimetria positiva. Calcularam-se ainda quatro intervalos de confiança para √X: 1 - Intervalo de confiança pelo método de Fieller. 2 - Intervalo de confiança empírico a um nível de 5% de probabilidade. Nesse caso para cada 1.000 dados tomaram - se o menor e o maior valor, após a eliminação dos 25 maiores e dos 25 menores. 3 - Intervalo obtido mediante a fórmula (Descrito na Dissertação) é obtido com a fórmula usual de variância. 4 - Intervalo obtido através da fórmula (Descrito na Dissertação) é obtido por diferenciação do ponto de máximo ou de mínimo. Concluem-se que os intervalos obtidos pelo método de Fieller e empiricamente sio coincidentes, embora possuem intervalos maiores do que os obtidos através de V̂2 (√X), que é o mais preciso. Resultados insatisfatórios foram obtidos com V̂1 (√X) pois, para σ2 > 35,00 , os extremos inferiores são negativos. |