Detalhes bibliográficos
Ano de defesa: |
2001 |
Autor(a) principal: |
Faceli, Katti |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03052006-093513/
|
Resumo: |
Robôs móveis dependem de dados provenientes de sensores para ter uma representação do seu ambiente. Porém, os sensores geralmente fornecem informações incompletas, inconsistentes ou imprecisas. Técnicas de fusão de sensores têm sido empregadas com sucesso para aumentar a precisão de medidas obtidas com sensores. Este trabalho propõe e investiga o uso de técnicas de inteligência artificial para fusão de sensores com o objetivo de melhorar a precisão e acurácia de medidas de distância entre um robô e um objeto no seu ambiente de trabalho, obtidas com diferentes sensores. Vários algoritmos de aprendizado de máquina são investigados para fundir os dados dos sensores. O melhor modelo gerado com cada algoritmo é chamado de estimador. Neste trabalho, é mostrado que a utilização de estimadores pode melhorar significativamente a performance alcançada por cada sensor isoladamente. Mas os vários algoritmos de aprendizado de máquina empregados têm diferentes características, fazendo com que os estimadores tenham diferentes comportamentos em diferentes situações. Objetivando atingir um comportamento mais preciso e confiável, os estimadores são combinados em comitês. Os resultados obtidos sugerem que essa combinação pode melhorar a confiança e precisão das medidas de distâncias dos sensores individuais e estimadores usados para fusão de sensores. |