Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Tonon, Vitor Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10052021-132937/
Resumo: Usuários enfrentam dificuldades em escolher produtos e serviços na Web devido a grande variedade de possibilidades de escolha. Nesse contexto, os sistemas de recomendação têm como objetivo auxiliar indivíduos a identificarem itens de interesse em um conjunto de opções. As abordagens tradicionais de sistemas de recomendação focam em recomendar itens mais relevantes para usuários individuais, não levando em consideração o contexto dos usuários. Porém, em muitas aplicações reais, é importante também considerar informações contextuais, por meio dos sistemas de recomendação sensíveis ao contexto, uma vez que estudos indicam que o uso de tais informações pode melhorar a acurácia das recomendações. Existem diversos tipos de sistemas de recomendação, como os baseados em conteúdo, na vizinhança de usuários e itens, baseados em fatoração de matrizes e em deep learning. No entanto, a maioria desses sistemas são considerados caixas-pretas, já que não oferecem transparência ao processo de recomendação, o que dificulta que usuários confiem nas recomendações apresentadas. Nesse sentido, fornecer recomendações interpretáveis tende a aumentar a confiança e a satisfação do usuário em relação ao sistema. O uso de explicações em sistemas de recomendação tem se mostrado uma área de pesquisa promissora, mas, ainda assim, poucos trabalhos exploraram a utilização de contexto como forma de gerar as explicações. Diante desse cenário, este projeto tem como objetivo propor o método HINCARS que gera recomendações interpretáveis utilizando informações contextuais. Os resultados obtidos mostraram que o método obteve resultados equiparáveis a um algoritmo estado-da-arte.