Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Tonon, Vitor Rodrigues |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10052021-132937/
|
Resumo: |
Usuários enfrentam dificuldades em escolher produtos e serviços na Web devido a grande variedade de possibilidades de escolha. Nesse contexto, os sistemas de recomendação têm como objetivo auxiliar indivíduos a identificarem itens de interesse em um conjunto de opções. As abordagens tradicionais de sistemas de recomendação focam em recomendar itens mais relevantes para usuários individuais, não levando em consideração o contexto dos usuários. Porém, em muitas aplicações reais, é importante também considerar informações contextuais, por meio dos sistemas de recomendação sensíveis ao contexto, uma vez que estudos indicam que o uso de tais informações pode melhorar a acurácia das recomendações. Existem diversos tipos de sistemas de recomendação, como os baseados em conteúdo, na vizinhança de usuários e itens, baseados em fatoração de matrizes e em deep learning. No entanto, a maioria desses sistemas são considerados caixas-pretas, já que não oferecem transparência ao processo de recomendação, o que dificulta que usuários confiem nas recomendações apresentadas. Nesse sentido, fornecer recomendações interpretáveis tende a aumentar a confiança e a satisfação do usuário em relação ao sistema. O uso de explicações em sistemas de recomendação tem se mostrado uma área de pesquisa promissora, mas, ainda assim, poucos trabalhos exploraram a utilização de contexto como forma de gerar as explicações. Diante desse cenário, este projeto tem como objetivo propor o método HINCARS que gera recomendações interpretáveis utilizando informações contextuais. Os resultados obtidos mostraram que o método obteve resultados equiparáveis a um algoritmo estado-da-arte. |