MFIS: algoritmo de reconhecimento e indexação em base de dados de impressões digitais em espaço métrico

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Jardini, Evandro de Araújo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18152/tde-04042008-143239/
Resumo: O problema dos métodos tradicionais de identificação de pessoas é que são baseados em senhas e assim podem ser esquecidas, roubadas, perdidas, copiadas, armazenadas de maneira insegura e até utilizadas por uma pessoa que não tenha autorização. Os sistemas biométricos automáticos surgiram para oferecer uma alternativa para o reconhecimento de pessoas com maior segurança e eficiência. Uma das técnicas biométricas mais utilizadas é o reconhecimento de impressões digitais. Com o aumento do uso de impressões digitais nestes sistemas, houve o surgimento de grandes bancos de dados de impressões digitais, tornado-se um desafio encontrar a melhor e mais rápida maneira de recuperar informações. De acordo com os desafios apresentados, este trabalho tem duas propostas: i) desenvolver um novo algoritmo métrico para identificação de impressões digitais e ii) usá-lo para indexar um banco de dados de impressões digitais através de uma árvore de busca métrica. Para comprovar a eficiência do algoritmo desenvolvido foram realizados testes sobre duas bases de imagens de impressões digitais, disponibilizadas no evento Fingerprint Verification Competition dos anos de 2000 e 2002. Os resultados obtidos foram comparados com os resultados do algoritmo proposto por Bozorth. A avaliação dos resultados foi feita pela curva Receiver Operating Characteristic juntamente com a taxa de Equal Error Rate, sendo que, o método proposto, obteve a taxa de 4,9% contra 7,2% do método de Bozorth e de 2,0% contra 2,7% do Bozorth nos banco de dados dos anos de 2000 e 2002 respectivamente. Nos testes de robustez, o algoritmo proposto conseguiu identificar uma impressão digital com uma parte da imagem de apenas 30% do tamanho original e por se utilizar uma base de dados indexada, o mesmo obteve vantagens de tempo na recuperação de pequenas quantidades de impressões digitais de uma mesma classe.