Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Tozzi, Karen Gonçalves |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/59/59135/tde-06112023-111509/
|
Resumo: |
A dosimetria gel é uma técnica que permite a medida de dose em três dimensões e, portanto, tem grande potencial de aplicação na radioterapia moderna. A calibração desses dosímetros é um procedimento essencial para sua utilização e demanda um tempo significativo seja durante a irradiação dos lotes de géis ou durante sua leitura com alguma técnica de imagem que, na maioria das vezes é feita através de imagens de ressonância magnética (IRM). O aprendizado de máquina (AM) é uma técnica que vem ganhando espaço em todas as áreas do conhecimento, de maneira a ajudar a otimizar a solução de tarefas. Este trabalho tem como objetivo usar modelos de algoritmos de AM para desenvolver uma metodologia capaz de predizer a curva de calibração (coeficientes angulares e lineares) de um lote de dosímetro químico com base em extração de características radiômicas com e sem a aplicação de filtros wavelets, das imagens dos tubos de géis não irradiados. Dois modelos de regressão foram inicialmente propostos, RandonForest (RF) e Categorical Boosting (CB) combinados com três técnicas de seleção de características que mais influenciam na predição dos coeficientes: Mean Decrease Impurity (MDI), Recursive Feature Elimination (RFE) e PowerShap (PS). As IRM que compõe o conjunto de dados foram separadas em dois conjuntos de dados: dataset 1 utilizado para desenvolver os modelos e o dataset 2, formado com IRM de uma máquina diferente da utilizada para adquirir as amostras presentes no dataset 1. Este segundo dataset foi designado para estudar a aplicabilidade do modelo desenvolvido através do primeiro conjunto de dados. Para avaliar os modelos desenvolvidos, foram utilizados três métricas: Erro quadrático médio (Mean Squared Error - MSE), Erro absoluto médio (Mean Absolute Error - MAE) e Raiz quadrada do erro quadrático médio (Root Mean Squared Error - RMSE) , sendo que os modelos apresentaram melhor performance quando desenvolvidos com base no MSE. Assim, a combinação de técnicas que apresentou melhor acurácia para as predições utilizou o modelo de regressão RF selecionando as melhores características com a biblioteca PS para os dois coeficientes. O valor de MSE de 6,67 x 10-3 englobando 77% das predições dentro de um desvio de ±5% para o coeficiente angular, e 0,073 com 80% das predições dentro do mesmo desvio para o coeficiente linear. Para o dataset 2 os valores de MSE chegaram a 2,84 x 10-2 para o coeficiente angular, diminuindo o desvio para ±2% em 94% das predições e 0,15 para o coeficiente linear, mantendo o desvio de incerteza de ±5% para 74% das predições. Também foram desenvolvidos três modelos de classificação para identificar as diferenças que as amostras de géis apresentam entre si, utilizando o modelo de classificação RF e selecionando as melhores características com o método PS. O modelo 1 com o objetivo de predizer o tipo de agente oxidante das amostras apresentou uma acurácia de 95% enquanto o modelo 2, desenvolvido para predizer o bloom das gelatinas utilizada na fabricação do gel, obteve 78% de acurácia. Já o terceiro modelo obteve uma acurácia de 80% para classificar se o lote de gel sofreu alguma alteração de luminosidade durante o processo de produção desses dosímetros. Aplicando esses modelos no dataset 2, os três foram capazes de classificar todas as amostras às classes que elas pertencem. |