Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Taborda, David Ciro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04012017-142757/
|
Resumo: |
In this work we study the magnetic field modeling of realistic non-axisymmetric plasma equilibrium configurations and the heat flux patterns on the plasma facing components of tokamak divertor discharges. We start by establishing the relation between generic magnetic configurations and Hamiltonian dynamical systems. We apply the concept of magnetic helicity, used to establish topological bounds for the magnetic field lines in ideal plasmas, and to understand the self-consistency of reconnected magnetic surfaces in non-axisymmetric configurations. After this theoretical discussion, we present some results on magnetohydrodynamic equilibrium and the use of analytical solutions to the Grad-Shafranov equation for describing real tokamak discharges based on the experimental diagnostics and realistic boundary conditions. We also compare the equilibrium reconstruction of a DIII-D discharge obtained with a numerical reconstruction routine, developed as part of this research, and the EFIT code used by several tokamak laboratories around the world. The magnetic topology and plasma profiles obtained with our method are in considerable agreement with the numerical reconstruction performed with the other code. Then, we introduce a simplified description of the generic non-axisymmetric magnetic field created by known sources and implement it numerically for describing the magnetic field due to external coils in tokamak devices. After that, we use this routines to develop a numerical procedure to adjust a suitable set of non-linear parameters of internal filamentary currents, which are intended to model the plasma response based on the magnetic field measurements outside the plasma. Finally, these methods are used to model the magnetic field created by a slowly rotating plasma instability in a real DIII-D discharge. The plasma response modeling is based on the magnetic probe measurements and allow us to calculate the magnetic field in arbitrary locations near the plasma edge. Using this information we determine the non-axisymmetric plasma edge through the magnetic invariant manifolds routine developed during this work. The intersection of the calculated invariant manifold with the tokamak chamber agrees considerably well with the heat flux measurements for the same discharge at the divertor plates, indicating the development of a rotating manifold due to the internal asymmetric plasma currents, giving quantitative support to our simplified description of the magnetic field and the plasma edge definition through the invariant manifolds. |