Detalhes bibliográficos
Ano de defesa: |
2004 |
Autor(a) principal: |
Souza, Rodrigo Nonamor Pereira Mariano de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-135448/
|
Resumo: |
Neste trabalho estudamos aspectos teóricos e algoritmicos de algumas classes de relações racionais: as relações racionais finitamente valoradas, as relações racionais k-valoradas, para todo inteiro positivo k, as funções racionais, as funções seqüenciais, e as funções subseqüenciais. Inicialmente, apresentamos alguns resultados clássicos para as relaçoes racionais, a representação de relações racionais por transdutores e por matrizes e algumas propriedades de fechamento. Weber provou que toda relação racional k-valorada pode ser decomposta numa união de k funções racionais. Apresentamos uma prova para esse resultado, que utiliza k aplicações do Teorema Cross-section de Eilenberg e parece ser mais simples que a de Weber. Utilizando essa decomposição, escrevemos uma outra prova para mostrar que o problema da equivalência de relações racionais k-valoradas é decidível. Incluímos também uma prova de Griffiths da indecidibilidade da equivalência de relações racionais finitamente valoradas. Generalizamos para as relações racionais k-valoradas, para todo inteiro positivo k, uma propriedade de Schützenberger para as funções racionais. Como conseqüência dessa generalização, temos um algoritmo (não polinomial) para decidir se um transdutor realiza uma relação racional k-valorada, para um dado inteiro positivo k. Descrevemos um algoritmo eficiente de Béal, Carton, Prieur e Sakarovitch para decidir se uma relação racional é uma função e um algoritmo eficiente dos mesmos autores para decidir se uma função racional é subseqüencial. A nossa descrição utiliza uma propriedade simples de simetria, que permitiu uma economia nos consumos de tempo e espaço desses dois algoritmos (na constante multiplicativa). Apresentamos uma caracterização de Choffrut das funções subseqüenciais palavra-palavra e um algoritmo para a detrminação de um transdutor, que utiliza explicitamente essa caracterização. Estudamos a minimização de <continuação> transdutores subseqënciais, utilizando uma família de monóides que chamamos de monóides com mdc. Provamos a existência de um transdutor minimal para funções subseqüenciais 'SIGMA IND. *' -> M, onde M é um monóide cancelativo com mdc único. Esse resultado inclui diversos monóides de interesse, como os monóides livres, e o monóide aditivo dos números reais não-negativos. Também apresentamos uma caracterização das funções subseqënciais 'SIGMA IND. *' -> M, onde M é um monóide cancelativo mdc, utilizando a congruência à direita de uma função. Finalmente, descrevemos um algoritmo eficiente para a minimização de um transdutor subseqüencial. Esse algoritmo tem duas etapas, sendo que a primeira é o algoritmo de Béal e Carton para a construção do prefixo de um transdutor, e a segunda é a minimização de um transdutor visto como um autômato finito determinístico, utilizando o algoritmo de Hopcroft, versão de Gries. |