Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Cardial, Marcilio Ramos Pereira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24082023-143119/
|
Resumo: |
Os modelos de sobrevivência, em sua maioria, consideram tempos de sobrevivência contínuos. Apesar disso, em vários estudos estes tempos são discretos, sendo desaconselhável, em algumas ocasiões, a utilização de um modelo contínuo para análise de dados discretos. Um dos modelos de regressão mais populares na análise de dados de sobrevivência é o modelo de riscos proporcionais de Cox, cuja principal característica é considerar que as covariáveis têm um efeito multiplicativo na função de risco. No entanto, essa característica não pode ser satisfeita quando os tempos de sobrevivência são discretos, devido ao fato da função de risco ser limitada no intervalo (0,1). Para resolver esse problema, Cox sugeriu uma alternativa discreta de seu modelo. Uma outra alternativa de modelo de regressão foi apresentada por Bennett, que assume que as covariáveis têm um efeito multiplicativo na chance (odds) de sobrevivência. Esses modelos são denominados como modelos de chances (de sobrevivência) proporcionais. Neste contexto, o presente trabalho tem como objetivo considerar a modelagem de chances proporcionais como uma alternativa para construção de modelos de regressão para dados de sobrevivência discretos. Mais especificamente, os objetivos são: (a) o estudo do modelo de chances de sobrevivência proporcionais para tempos contínuos; (b) a construção do modelo de regressão para dados com chances de sobrevivência proporcionais e tempos discretos; (c) obtenção das estimativas pontuais e intervalares dos parâmetros do modelo; (d) propor procedimentos para verificação da suposição de chances proporcionais e da qualidade do ajuste do modelo; (e) ilustração do modelo e procedimentos propostos em um conjunto de dados reais. Os resultados obtidos em dados simulados indicaram evidências das propriedades assintóticas dos estimadores e o modelo proposto apresentou um bom ajuste ao conjunto de dados reais, provando ser uma boa alternativa para a modelagem de dados de sobrevivência discretos com covariáveis. |