Um estudo comparativo de métodos de segmentação de documentos antigos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Yanque, Nury Yuleny Arosquipa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
OCR
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-25092019-140704/
Resumo: Há uma vasta quantidade de informação nos textos antigos manuscritos e tipografados, e grandes esforços para a digitalização e disponibilização desses documentos têm sido feitos nos últimos anos. No entanto, os sistemas de Reconhecimento Óptico de Caracteres (OCR) não têm grande sucesso nesses documentos por diversas razões, por exemplo, devido a defeitos por envelhecimento do papel, manchas, iluminação desigual, dobras, escrita do verso transparecendo na frente, pouco contraste entre texto e fundo, entre outros. Uma das etapas importantes para o sucesso de um OCR é a boa segmentação da parte escrita e do fundo da imagem (binarização) e essa etapa é particularmente sensível a esses efeitos que são próprios de documentos históricos. Tanto assim que nos últimos oito anos foram realizadas competições de métodos de binarização de documentos históricos que levaram ao avanço do estado da arte na área. Neste trabalho fizemos um estudo comparativo de diversos métodos de segmentação de documentos antigos e propusemos um método baseado em aprendizado de máquina que resgata as vantagens dos métodos heurísticos. Esse estudo abrangeu documentos históricos manuscritos e tipografados e foi comparado com os métodos do estado da arte via métricas usuais e via um sistema de OCR de código aberto. Os resultados obtidos pelo método proposto são comparáveis com os métodos do estado da arte respeito no resultado do OCR, mostrando algumas vantagens em imagens específicas.