Geometria 2-plética, algebroides de Courant, e simetrias infinitesimais de S¹-bundle gerbes

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Andrade, Eduardo de Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042024-191027/
Resumo: Para toda variedade 2-plética nós podemos associar um algebroide de Courant exato e também uma 2-álgebra de Lie consistindo de funções suaves e 1-formas hamiltonianas (álgebra de observáveis). Nós veremos que existe um morfismo de 2-álgebras de Lie entre a álgebra de observáveis e a 2-álgebra de Lie do algebroide de Courant associado (esta consiste de seções do algebroide de Courant e funções suaves). Além disso, considerando um S¹-bundle gerbe sobre a mesma variedade 2-plética, mostraremos que existe um quasi-isomorfismo entre a álgebra de observáveis e a 2-álgebra de Lie das simetrias infinitesimais que preservam a estrutura conectiva do S¹-bundle gerbe.