Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Queiroz, Alfredo Antonio Alencar Exposito de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-06052020-104650/
|
Resumo: |
A atividade de mineração está diretamente relacionada com o desenvolvimento socioeconômico de um país, exercendo uma grande influencia nas exportações de matéria-prima, produção de energia e infraestrutura. O Brasil possui as maiores jazidas de minerais do supergrupo do pirocloro e isso gera bilhões de dólares na exportação de nióbio e produtos associados para o país. Esta situação ilustra a importância de desenvolvimento de técnicas de identificação e caracterização dos minerais com o objetivo de aperfeiçoar os processos de beneficiamento, otimizar o aproveitamento de recursos naturais e reduzir os impactos ambientais do procedimento de extração. A espectroscopia Raman é uma técnica adequada para a caracterização de minerais, uma vez que não é necessário o preparo prévio da amostra para a análise e não é destrutiva. Neste trabalho é realizada a identificação de minerais dos grupos da microlita e pirocloro pertencentes ao supergrupo do pirocloro, utilizando redes neurais artificiais para classificar os espectros Raman característicos coletados em três regiões de análise: 100–1400 cm-1 (região de bandas Raman características), 1200–1800 cm-1 (região das bandas de deformação angular de H2O) e 2800–4000 cm-1 (região das bandas de estiramento de OH). Os espectros coletados foram tratados por dois métodos de correção de linha de base (Mínimos Quadrados Assimétricos e Vizinhos Próximos) antes de serem utilizados nas primeiras etapas de aprendizagem das redes neurais. Outras técnicas de caracterização foram utilizadas (difração de raios-X por monocristal e microssonda eletrônica) para confirmar a identificação das amostras padrão deste trabalho que foram usadas como conjunto de dados de treinamento das redes neurais. As redes estruturadas neste trabalho apresentaram bom desempenho, obtendo acurácia de 0,88 com valor da função custo de 0,52, em comparação com os valores da literatura. |