Recomendação de conteúdo baseada em informações semânticas extraídas de bases de conhecimento

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Silva Junior, Salmo Marques da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092017-143709/
Resumo: A fim de auxiliar usuários durante o consumo de produtos, sistemas Web passaram a incorporar módulos de recomendação de itens. As abordagens mais populares são a baseada em conteúdo, que recomenda itens a partir de características que são do seu interesse, e a filtragem colaborativa, que recomenda itens bem avaliados por usuários com perfis semelhantes ao do usuário alvo, ou que são semelhantes aos que foram bem avaliados pelo usuário alvo. Enquanto que a primeira abordagem apresenta limitações como a sobre-especialização e a análise limitada de conteúdo, a segunda enfrenta problemas como o novo usuário e/ou novo item, também conhecido como partida fria. Apesar da variedade de técnicas disponíveis, um problema comum existente na maioria das abordagens é a falta de informações semânticas para representar os itens do acervo. Trabalhos recentes na área de Sistemas de Recomendação têm estudado a possibilidade de usar bases de conhecimento da Web como fonte de informações semânticas. Contudo, ainda é necessário investigar como usufruir de tais informações e integrá-las de modo eficiente em sistemas de recomendação. Dessa maneira, este trabalho tem o objetivo de investigar como informações semânticas provenientes de bases de conhecimento podem beneficiar sistemas de recomendação por meio da descrição semântica de itens, e como o cálculo da similaridade semântica pode amenizar o desafio enfrentado no cenário de partida fria. Como resultado, obtém-se uma técnica que pode gerar recomendações adequadas ao perfil dos usuários, incluindo itens novos do acervo que sejam relevantes. Pode-se observar uma melhora de até 10% no RMSE, no cenário de partida fria, quando se compara o sistema proposto com o sistema cuja predição de notas é baseada na correlação de notas.