Detalhes bibliográficos
Ano de defesa: |
2002 |
Autor(a) principal: |
Lencina, Viviana Beatriz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-131408/
|
Resumo: |
Neste trabalho discutimos problemas de inferência em populações finitas focando nossa atenção em estimadores ótimos sob modelos probabilísticos baseados no planejamento, incluindo amostragens com um e dois estágios. Os parâmetros de interesse são combinações lineares das variáveis envolvidas nos modelos probabilísticos e os estimadores são combinações lineares das variáveis observáveis após a amostragem. A metodologia desenvolvida permite obter estimadores ótimos da mesma forma que o enfoque baseado em superpopulações. A introdução de erro gaussiano no modelo posiciona o problema no mesmo contexto dos modelos lineares clássicos e, em situações onde é possível observar várias vezes uma mesma unidade, a teoria de modelos mistos pode ser empregada. Resolvemos a controvérsia nos modelos mistos definições dos efeitos de interesse que levam em consideração as deiferentes fontes de aleatoriedade e que podem ser aplicadas também no caso infinito. Discutimos a possibilidade de avaliar inexistência de efeito principal do fator aleatório sob os modelos propostos e em situações de dados desbalanceados, salientamos a existência de testes F exatos para avaliar a anulação de componentes de variância e estudamos o poder dos mesmos para diferentes níveis de desbalanceamento |