Estudo da multicolinearidade em bovinos compostos multirraciais

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Silva, Bárbara da Conceição Abreu
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/74/74131/tde-12042021-142319/
Resumo: Apesar de um pouco complexa, a formação de animais compostos representa uma alternativa para a solução de diversos problemas encontrados na produção de bovinos de corte no Brasil, dada a diversidade de climas e regiões presentes em nosso país, a criação destes animais compostos auxilia na qualidade dos rebanhos, no que se refere a aspectos produtivos, reprodutivos e de subsistência. Diante de tantas raças, combinações e parâmetros nos modelos de avaliação genética dos animais compostos, surge um problema matemático: a multicolinearidade, ela ocorre quando as variáveis independentes possuem uma alta correlação, levando então a um confundimento dos estimadores dos coeficientes de regressão. Os principais objetivos deste estudo são: avaliar a estrutura populacional e a diversidade genética ao longo do processo de criação e seleção do Composto Montana®; detectar a presença de multicolinearidade em características de crescimento; obter estimativas dos efeitos genéticos aditivos direto e materno, dos efeitos genéticos não aditivos, assim como dos efeitos fixos, pelos modelos sem covariáveis (SC), modelo tradicional com as covariáveis (REML), quadrados mínimos (QM), regressão de cumeeira (RC), análise de fatores (AF) e componentes principais (PCA). O diagnóstico para a multicolinearidade para estas características foi suficientemente grande para provar que existe este fenômeno e merece atenção especial nas análises de estimação dos componentes de variância pelo método dos quadrados mínimos e na predição dos valores genéticos para estas características. As correções para a multicolinearidade efetuadas foram eficientes para ajustar o β das covariáveis, para todos os métodos. A AF e PCA apresentaram resultados coerentes com a correção da problemática deste estudo, estas análises tem um potencial elevado para inclusão nas avaliações genéticas de bancos de dados em que há o problema de multicolinearidade. A predição dos valores genéticos dos animais para as características deste estudo foi beneficiada pela análise que consistiu na utilização do fenótipo original, com os componentes ajustados para a análise do QM (QMP). A regressão de cumeeira neste estudo pode não ter trazido grandes benefícios, possivelmente pela empiricidade de estimação do parâmetro \"k\". Apesar da diferença observada entre os métodos nas análises de comparação de modelos, como o ajuste do β das covariáveis não interfere na predição dos valores genéticos, recomenda-se a aplicação da correção para a estimação dos componentes de variância e dos parâmetros genéticos, cabe ao pesquisador então um maior detalhamento do seu banco de dados para a escolha do modelo parcimonioso mais adequado.