Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Bejar, Hans Harley Ccacyahuillca |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-23082023-182605/
|
Resumo: |
Segmentar uma imagem consiste em particioná-la em regiões que a compõem, tal como para isolar os pixels de um objeto de interesse em uma dada aplicação. A segmentação de imagem é um dos problemas mais desafiadores em processamento de imagens e visão computacional, tendo que lidar com problemas como ruído, volume parcial, inomogeneidade, variação de iluminação, baixo contraste, variações de resolução da câmera, heterogeneidade do plano de fundo, objetos complexos com diferentes formas e tamanhos. No contexto de segmentação não supervisionada, a dificuldade é agravada pela ausência de pixels rotulados que poderiam nos fornecer pistas para a correta identificação dos objetos de interesse e, portanto, tornando a tarefa menos sujeita a ambiguidades. A Oriented Image Foresting Transform (OIFT) tem sido empregada com sucesso no contexto de segmentação interativa de imagens, permitindo a incorporação de várias restrições de alto nível, tais como polaridade de borda, restrições de conexidade, restrições de forma e relações hierárquicas de inclusão/exclusão, a fim de customizar a segmentação para um dado objeto alvo ou grupo de objetos de interesse. Neste trabalho, estendemos a OIFT para a segmentação não supervisionada de imagens sujeita a restrições de alto nível com base em cortes ótimos em grafos direcionados. O novo método proposto, denominado Unsupervised OIFT (UOIFT), considera relações assimétricas para calcular hierarquias de partições. Dentre as restrições de alto nível atualmente suportadas pela UOIFT, temos: (a) Polaridade de borda, que favorece configurações esperadas para as transições de borda do objeto desejado (e.g., transições de claro para escuro/escuro para claro ou entre duas cores esperadas). (b) Penalização de contornos com elevada curvatura, sendo possível distinguir partes côncavas e convexas da forma, assim permitindo a filtragem de formas indesejadas. (c) Favorecimento de objetos com maior área/volume, via reorganização da hierarquia, conservando as demais restrições. Os resultados são demonstrados utilizando um grafo de regiões adjacentes de superpixels em imagens médicas e naturais, exigindo um número menor de partições para isolar com precisão os objetos de interesse nas imagens em comparação com outros métodos da literatura. |