Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Ashimine, Jishu |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-144359/
|
Resumo: |
A seleção de características tem um papel importante no processo de reconhecimento de padrões. Métodos de seleção automática de características que gerem bons subconjuntos a partir de um conjunto com grande número de características são de importância fundamental dentro desse contexto. Estes métodos de seleção focam em dois pontos prncipais: o algoritmo de seleção e a função-critério. No projeto de mestrado, descrito neste texto de dissertação, desenvolvemos uma extensão da abordagem de seleção de características baseada em distâncias nebulosas entre classes, proposto anteriormente em [10], com a introdução de uma nova função critério. Nesta extensão, cada classe do conjunto de treinamento será subdividida em k grupos, utilizando o algoritmo fuzzy k-means. Isto permitirá a generalização para que a função critério utilize k protótipos por classe, no lugar de um único protótipo, como em [10]. Além disso, a função de pertinência associada a cada amostra do conjunto de treinamento será estendida apropriadamente de maneira a incorporar a informação proveniente dos k protótipos por classe. Foi avaliado o desempenho de seleção dessas duas funções critério realizando-se testes em dados sintéticos (utilizando-se distribuições Gaussianas) e em dados reais (a base de dados Ionosphere obtidas de UCI[6]) |