Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Cabrejos, Diego Antonio Leonardo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-17052021-091522/
|
Resumo: |
Septinas são proteínas envolvidas em diversos processos celulares (citocinese, espermatogênese, apoptose etc.), razão pela qual estão relacionadas com o desenvolvimento de várias doenças. Pertencentes à família das GTPases, apresentam três domínios: N e C terminal altamente variável e um domínio G (ligação a GTP/GDP) conservado. Para realizar suas funções, uma septina de cada grupo (4 grupos diferentes em humanos) se associa para formar heterofilamentos usando dois tipos de interfaces: a interface G e a interface NC. Embora seja conhecido o tipo de interface de contato e a ordem específica das septinas na montagem do filamento, os mecanismos moleculares que controlam a polimerização correta do filamento ainda são desconhecidos. Aqui, descrevemos os estudos realizados nas interfaces G e NC das septinas, a fim de encontrar os mecanismos moleculares de interação específica e verificar a substituição das septinas por outras do mesmo grupo. Oito combinações de heterocomplexos “G” de septinas foram co-expressas e purificadas para serem caracterizadas por técnicas biofísicas, apresentando heterodímeros homogêneos em solução (SEC e SEC-MALS) com presença de GTP e GDP em proporções aproximadamente equimolares. Além disso, cada dímero exibe uma estabilidade térmica diferente, o que pode indicar uma preferência de interação para a formação de complexos. Os estudos cristalográficos dos heterodímeros G permitiu identificar interações específicas que determinam a especificidade do complexo formado por septinas do grupo II e grupo III (validando a substituição de septinas do mesmo grupo), ajudando também a explicar a presença de um grupo catalíticamente inativo em estas proteínas. Por outro lado, as estruturas cristalográficas dos coiled-coils das septinas 1, 4 e 5 (Interface NC) permitiu observar um novo motivo proteico que sugere estar relacionado com a interação entre dois heterofilamentos, formando estruturas de alta complexidade em septinas (redes etc.). |