Optimization of vortex generators positions and angles in fin-tube compact heat exchanger at low Reynolds number.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Salviano, Leandro Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3150/tde-26122014-120408/
Resumo: In the last few decades, augmentation of heat transfer has emerged as an important research topic. Although many promising heat transfer enhancement techniques have been proposed, such as the use of longitudinal vortex generators, few researches deal with thermal optimization. In the present work, it was conducted an optimization of delta winglet vortex generators position and angles in a fin-tube compact heat exchanger with two rows of tubes in staggered tube arrangement. Two approaches were evaluated: Response Surface Methodology (Neural Networking) and Direct Optimization. Finite-Volume based commercial software (Fluent) was used to analyze heat transfer, flow structure and pressure loss in the presence of longitudinal vortex generators (LVG). The delta winglet aspect ratio was 2 and the Reynolds numbers, based on fin pitch, were 250 and 1400. Four vortex generator parameters which impact heat exchanger performance were analyzed: LVG position in direction x-y, attack angle (θ) and roll angle (ᵩ). The present work is the first to study the influence of LVG roll angle on heat transfer enhancement. In total, eight independent LVG parameters were considered: (x₁y₁θ₁ᵩ₁) for the first tube and (x₂y₂θ₂ᵩ₂) for the second tube. Factor Analysis method (software ModeFrontier) was used to study of the influence of these LVG parameters in heat exchanger performance. The effect of each LVG parameter on heat transfer and pressure loss, expressed in terms of Colburn factor (j) and Friction factor (f), respectively, were evaluated. The optimized LVG configurations led to heat transfer enhancement rates that are much higher than reported in the literature. Direct Optimization reported better results than Response Surface Methodology for all objective functions. Important interactions were found between VG1 and VG2, which influenced the results of Colburn (j) and Friction (f) factors for each Reynolds number. Particularly, it was found that the asymmetry of the LVG, in which the VG2 parameters strongly depend on the VG1 parameters, plays a key role to enhance heat transfer. Moreover, for each Reynolds number and each objective function, there is an optimal LVG arrangement. If the objective is to mitigate pressure drop, VG1 may be suppressed because its main goal is increasing the heat transfer downstream. On the other hand, VG2 was relevant for both increase the heat transfer and decrease the pressure drop. Roll angle had a strong influence on Friction factor (f), especially for VG1 and low Reynolds number.