Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Araujo, Francisco Eloi Soares de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-12092012-230830/
|
Resumo: |
A comparação de sequências finitas é uma ferramenta que é utilizada para a solução de problemas em várias áreas. Comparamos sequências inferindo quais são as operações de edição de substituição, inserção e remoção de símbolos que transformam uma sequência em uma outra. As matrizes de pontuação são estruturas largamente utilizadas e que definem um custo para cada tipo de operação de edição. Uma matriz de pontuação G é indexada pelos símbolos do alfabeto. A entrada de G na linha A, coluna B mede o custo da operação de edição para substituir o símbolo A pelo símbolo B. As matrizes de pontuação induzem funções que atribuem uma pontuação para um conjunto de operações de edição. Algumas dessas funções para a comparação de duas e de várias sequências são estudadas nesta tese. Quando cada símbolo de cada sequência é editado exatamente uma vez para transformar uma sequência em outra, o conjunto de operações de edição pode ser representado por uma estrutura conhecida por alinhamento. Descrevemos uma estrutura para representar o conjunto de operações de edição que não pode ser representado por um alinhamento convencional e descrevemos um algoritmo para encontrar a pontuação de uma sequência ótima de operações de edição usando um algoritmo conhecido para encontrar a pontuação de um alinhamento convencional ótimo. Considerando três diferentes funções induzidas de pontuação, caracterizamos, para cada uma delas, a classe das matrizes para as quais as funções induzidas de pontuação são métricas nas sequências. Dadas duas matrizes de pontuação G e G\', dizemos que elas são equivalentes para uma dada função que é induzida por uma matriz de pontuação e que avalia a qualidade de um alinhamento se, para quaisquer dois alinhamentos A e B, vale o seguinte: o alinhamento A é ``melhor\'\' do que o alinhamento B considerando a matriz G se e somente se A é ``melhor\'\' do que o alinhamento B considerando a matriz G\'. Neste trabalho, determinamos condições necessárias e suficientes para que duas matrizes de pontuação sejam equivalentes. Finalmente, definimos três novos critérios para pontuar alinhamentos de várias sequências. Todos os critérios consideram o comprimento do alinhamento além das operações de edição por ele representadas. Para cada um dos critérios definidos,propomos um algoritmo e o problema de decisão correspondente mostramos ser NP-completo. |