Métodos numéricos para escoamentos com linhas de contato dinâmicas

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Montefuscolo, Felipe
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24042013-150545/
Resumo: O fenômeno de molhamento, estudo de como um líquido se deposita em um sólido, apresenta problemas ainda em aberto, dos pontos de vista da modelagem física e da simulação numérica. O maior interesse acadêmico neste tipo de escoamento é a linha tríplice (ou linha de contato) formada da interação sólido-líquido-gás. A condição de contorno clássica de não escorregamento na interface líquido-sólido leva a uma singularidade no tensor de tensões nesta linha. Além disso, ainda não está estabelecido qual o melhor modelo para descrever o ângulo de contato formado entre a superfície livre e o substrato (o sólido). Neste trabalho, são discutidos métodos numéricos para a simulação de linhas de contato dinâmicas. Os efeitos da tensão superficial são estudados com a abordagem do princípio do trabalho virtual, o qual leva o problema à equações na formulação variacional, linguagem natural para o tratamento numérico com o método dos elementos finitos (FEM). O domínio é discretizado por uma malha não-estruturada de forma que as interfaces separadoras são explicitamente representadas pela malha. As derivadas temporais são tratadas em uma abordagem Lagrangeana-Euleriana arbitrária (ALE). Finalmente, são apresentados os resultados numéricos obtidos com o método ALE-FEM, discutindo alguns aspectos da sua convergência temporal e espacial.