Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Hata, Alberto Yukinobu |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13072010-144634/
|
Resumo: |
A robótica móvel autônoma é uma área relativamente recente que tem como objetivo a construção de mecanismos capazes de executar tarefas sem a necessidade de um controlador humano. De uma forma geral, a robótica móvel defronta com três problemas fundamentais: mapeamento de ambientes, localização e navegação do robô. Sem esses elementos, o robô dificilmente poderia se deslocar autonomamente de um lugar para outro. Um dos problemas existentes nessa área é a atuação de robôs móveis em ambientes externos como parques e regiões urbanas, onde a complexidade do cenário é muito maior em comparação aos ambientes internos como escritórios e casas. Para exemplificar, nos ambientes externos os sensores estão sujeitos às condições climáticas (iluminação do sol, chuva e neve). Além disso, os algoritmos de navegação dos robôs nestes ambientes devem tratar uma quantidade bem maior de obstáculos (pessoas, animais e vegetações). Esta dissertação apresenta o desenvolvimento de um sistema de classificação da navegabilidade de terrenos irregulares, como por exemplo, ruas e calçadas. O mapeamento do cenário é realizado através de uma plataforma robótica equipada com um sensor laser direcionado para o solo. Foram desenvolvidos dois algoritmos para o mapeamento de terrenos. Um para a visualização dos detalhes finos do ambiente, gerando um mapa de nuvem de pontos e outro para a visualização das regiões próprias e impróprias para o tráfego do robô, resultando em um mapa de navegabilidade. No mapa de navegabilidade, são utilizados métodos de aprendizado de máquina supervisionado para classificar o terreno em navegável (regiões planas), parcialmente navegável (grama, casacalho) ou não navegável (obstáculos). Os métodos empregados foram, redes neurais artificais e máquinas de suporte vetorial. Os resultados de classificação obtidos por ambos foram posteriormente comparados para determinar a técnica mais apropriada para desempenhar esta tarefa |