Caracterização da etapa de estabilização do processo produtivo de fibra de carbono a partir de poliacrilonitrila utilizando algoritmos inteligentes

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Terra, Bruna Mota
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/85/85133/tde-23062021-144310/
Resumo: Nos últimos anos, os materiais compósitos vêm expandindo, cada vez mais, sua aplicação em diversos segmentos, e em especial, os materiais compósitos poliméricos reforçados com fibra de carbono, demonstram ser um material estrutural de elevado desempenho que combina baixa massa específica e estabilidade mecânica. A produção de fibra de carbono, utilizando a poliacrilonitrila como precursor, possui diversas etapas em sequência: polimerização, fiação, estabilização térmica, carbonização e tratamento superficial. Em função da elevada duração e da importância das reações que ocorrem durante a estabilização, esta é considerada a etapa mais crítica do processo, na qual ocorre a formação do anéis aromáticos que influenciam diretamente na estrutura final da fibra de carbono e, consequentemente, na qualidade deste material. Visando otimizar o desenvolvimento deste material, bem como obter a redução do custo de produção, o presente trabalho realizou a modelagem computacional da etapa de estabilização térmica utilizando algoritmos inteligentes. Para obter o modelo, foi realizada uma prévia análise qualitativa utilizando as variáveis de processo e de qualidade dos materiais envolvidos na produção destas fibras. Esta análise inicial utilizou Mapas Auto-Organizáveis, a qual baseia-se em um treinamento não-supervisionado desta rede neural artificial. Posteriormente, foi utilizado treinamento supervisionado em uma rede neural feed-forward com retropropagação (backpropagation) para a análise quantitativa. A partir destas análises, foi possível simular a etapa de estabilização térmica de uma planta, em escala laboratorial, de produção de fibra de carbono, obtendo-se resultados com erros relativos de 2,98±0,01% e 2,48±0,02% para os parâmetros de Densidade Volumétrica e do Índice de Conversão por Espectrometria por Infravermelho com Transformada de Fourier (FTIR), quando comparados com os resultados experimentais.