Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Turcato, Afonso Celso |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-16072021-172236/
|
Resumo: |
O aumento na quantidade de informações importantes que percorrem as redes de computadores faz com que a segurança seja fundamental para garantir a integridade, a confidencialidade e a disponibilidade dos dados trafegados. No ambiente industrial isso não é diferente. Em busca desse aumento da segurança, são utilizados dispositivos como Firewalls e Sistemas de Detecção de Intrusão (SDI). Hoje em dia, algoritmos de Aprendizado de Máquina (AM) da área de Inteligência Artificial (IA) estão sendo aplicados para a melhoria de desempenho desses dispositivos. Este trabalho propõe investigar, desenvolver, implementar e validar um método para detectar intrusão em redes PROFINET com uso de técnicas de Aprendizado de Máquina. O método utilizado está fundamentado na análise das características de comunicação do protocolo PROFINET e na identificação e classificação de padrões, sendo esta, uma das principais aplicações de classificadores inteligentes como as Redes Neurais Artificiais (RNA), as Máquinas de Vetores Suporte (SVM). As intrusões são identificadas por meio da análise do tráfego da rede em sua fase de operação utilizando-se classificadores unários e binários. Ao todo, 114 estruturas de classificação unárias e 196 estruturas de classificação binárias foram avaliadas com dados de 10 cenários distintos de tráfego de rede PROFINET. Os SDI propostos apresentaram Taxa de Detecção média de 98,1% e Taxa de Alarmes Falsos média de 0,4% utilizando-se classificadores unários e Taxa de Detecção de 100% e Taxa de Alarmes Falsos de 0% utilizando-se classificadores binários. |