Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Soares, Antonio Helson Mineiro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032015-111952/
|
Resumo: |
Algoritmos Evolutivos que utilizam modelos probabilísticos de distribuição dos valores das variáveis (para orientar o processo de busca da solução de problemas) são chamados Algoritmos de Estimação de Distribuição (AEDs). Esses algoritmos têm apresentado resultados relevantes para lidar com problemas relativamente complexos. O desempenho deles depende diretamente da qualidade dos modelos probabilísticos construídos que, por sua vez, dependem dos métodos de construção dos modelos. Os melhores modelos em geral são construídos por métodos computacionalmente complexos, resultando em AEDs que requerem tempo computacional alto, apesar de serem capazes de explorar menos pontos do espaço de busca para encontrar a solução de um problema. Este trabalho investiga modelos probabilísticos obtidos por algoritmos de reconstrução de filogenias, uma vez que alguns desses métodos podem produzir, de forma computacionalmente eficiente, modelos que representam bem as principais relações entre espécies (ou entre variáveis). Este trabalho propõe algumas estratégias para obter um melhor uso de modelos baseados em filogenia para o desenvolvimento de AEDs, dentre elas o emprego de um conjunto de filogenias em vez de apenas uma filogenia como modelo de correlação entre variáveis, a síntese das informações mais relevantes desse conjunto em uma estrutura de rede e a identificação de grupos de variáveis correlacionadas a partir de uma ou mais redes por meio de um algoritmo de detecção de comunidades. Utilizando esses avanços para a construção de modelos, foi desenvolvido uma nova técnica de busca, a Busca Exaustiva Composta, que possibilita encontrar a solução de problemas combinatórios de otimização de diferentes níveis de dificuldades. Além disso, foi proposta uma extensão do novo algoritmo para problemas multiobjetivos, que mostrou ser capaz de determinar a fronteira Pareto-ótima dos problemas combinatórios investigados. Por fim, o AED desenvolvido possibilitou obter um compromisso em termos de número de avaliações e tempo de computação, conseguindo resultados similares aos dos melhores algoritmos encontrados para cada um desses critérios de desempenho nos problemas testados. |