Reconhecimento de eventos de direção utilizando sensores inerciais e técnicas de aprendizado de máquina.

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Escottá, Alvaro Teixeira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3140/tde-05092022-081303/
Resumo: O monitoramento do comportamento de motoristas tem sido amplamente explorado pelo crescente interesse em sistemas que permitem um maior controle sobre as atividades é possível criar serviços personalizados que visam, dentre algumas aplicações, o controle da taxa de acidentes, precificação de seguros, detecção de sequestros, direção ecológica e gerenciamento de veículos compartilhados e locados. Os aspectos relacionados ao comportamento de motoristas podem ser monitorados a partir de métodos categorizados como recursos visuais e não visuais. No entanto, recursos visuais, baseados em técnicas de visão computacional, apresentam algumas limitações, tais como a violação de privacidade do usuário, a restrição na amplitude do movimento e as interferências do meio externo. Dessa forma, os sensores inerciais (acelerômetros e giroscópios) surgem como um dos meios mais atrativos e utilizados para obtenção de dados que caracterizam o comportamento de motoristas, através dos eventos de direção, que em geral, são descritos pelas ações de acelerar, frear e virar. Este trabalho explora algoritmos tradicionais de aprendizagem de máquina e aprendizagem profunda para realizar a classificação de comportamentos agressivos e não agressivos através dos eventos de direção. Para tanto, são utilizados sinais de aceleração linear e velocidade angular, processando somente as componentes do sinal que apresentam o maior potencial discriminatório para categorizar os eventos. Os modelos de classificação são baseados em Support Vector Machine (SVM), Redes Neurais Multilayer Perceptron (MLP) e Redes Neurais Convolucionais 1D e 2D. Os modelos baseados em SVM e MLP utilizam como entrada dados resultantes da engenharia de atributos e da implementação do algoritmo Dynamic Time Warping (DTW). Os modelos baseados em Redes Neurais Convolucionais 1D e 2D, aplicam a estrutura AlexNet, com pequenas modificações, nos dados pré-processados dos sensores inerciais e nas representações bidimensionais provenientes da conversão dos sinais temporais em gráficos de recorrência. Os resultados demonstram a potencialidade dos métodos abordados, obtendo-se bom desempenho na classificação de eventos de direção com os modelos SVM, MLP, 1D-AlexNet e 2D-AlexNet. Além disso, os resultados são consistentes para avaliação de dados coletados por meio de sensores inerciais e abrangem os eventos de direção mais recorrentes durante a conduta veicular, caracterizando o comportamento agressivo dos motoristas.