Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Gonzalez, Nelson Mimura |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-03032017-083914/
|
Resumo: |
Cloud computing represents a distributed computing paradigm that gained notoriety due to its properties related to on-demand elastic and dynamic resource provisioning. These characteristics are highly desirable for the execution of workflows, in particular scientific workflows that required a great amount of computing resources and that handle large-scale data. One of the main questions in this sense is how to manage resources of one or more cloud infrastructures to execute workflows while optimizing resource utilization and minimizing the total duration of the execution of tasks (makespan). The more complex the infrastructure and the tasks to be executed are, the higher the risk of incorrectly estimating the amount of resources to be assigned to each task, leading to both performance and monetary costs. Scenarios which are inherently more complex, such as hybrid and multiclouds, rarely are considered by existing resource management solutions. Moreover, a thorough research of relevant related work revealed that most of the solutions do not address data-intensive workflows, a characteristic that is increasingly evident for modern scientific workflows. In this sense, this proposal presents MPSF, the Multiphase Proactive Scheduling Framework, a cloud resource management solution based on multiple scheduling phases that continuously assess the system to optimize resource utilization and task distribution. MPSF defines models to describe and characterize workflows and resources. MPSF also defines performance and reliability models to improve load distribution among nodes and to mitigate the effects of performance fluctuations and potential failures that might occur in the system. Finally, MPSF defines a framework and an architecture to integrate all these components and deliver a solution that can be implemented and tested in real applications. Experimental results show that MPSF is able to predict with much better accuracy the duration of workflows and workflow phases, as well as providing performance gains compared to greedy approaches. |